NONLINEAR ELECTRIC FIELD OSCILLATIONS
IN CONTINUOUS MEDIA

Yu. P, Emets and I. I. Repa

Strong nonlinear potential and drift-velocity waves in a nonequilibrium medium, in which the
current-carrier collision frequency depends on the electric field, are considered in the hydro-
dynamic approximation,

Under certain conditions, the differential operator describing the electric field in a nonlinear medium
can change from one type to another [1]. In this case field oscillations can appear which cannot be treated
in the context of a linear theory, because the variations in the steady state of the initially undisturbed quan-
tities are not negligible. For a logical examination of the structure of high-amplitude waves in an electric
field, the kinetic equation for the current carriers, as well as the field equations, must be used. Such a
study of the oscillations is very detailed, and it is extremely complicated from the mathematical point of
view. An exact solution of the problem is easily obtained on the basis of the equations of plasma dynamics
in the hydrodynamic approximation,

The equations of motion and continuity for the electrons and Poisson's equation for the electrostatic
potential provide our starting-point in the problem. Conditions are considered for which the natural mag-
netic field of the current and the charge pressure gradient can be neglected.

1. In the one-dimensional nonstationary case, for a fixed ion background, we have the system of
equations
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where u, e, m, and 7 are the directed velocity, charge, mass, and colligsion time of an electron, respective-
ly; ¢ is the electrostatic potential; n and n; are the electron and ion densities; and ¢ is the dielectric
constant,

The nonlinearity of system (1.1) is due to the presence of the delay term udu/dx in the equations of
motion and the dependence of the relaxation time 7 on the velocity u, A general investigation of (1.1) is
possible without specifying a particular function 7 = 7(u); it is only necessary for 7(u) to be smooth, con-
tinuous, and increasing,

We consider the solution of (1.1) in a coordinate system moving with constant velocity U relative to
the initial system ( £ =x — Ut). In the moving system

(—U)u 4 2q + =0, (u—U)n = const = (uy — D)ng w.2)
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where the primes denote differentiation with respect to £.

Eliminating the potential from the first equation, we obtain a nonlinear second-order equation for the
velocity:
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Here, wj is the plasma frequency; A ; is a dimensionless number; U, is the local velocity of pro-
pagation of disturbances in the nonlinear medium; and U, and A; characterize, respectively, the absolute
and relative degrees of medium nonlinearity, due to the dependence of T on u,

If U, takes values U < u (A, > 1), then it follows from
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that, in the assumed conditions, the coefficient of dynamic friction u/ will increase along with u, until the
latter reaches a critical value ux, corresponding to A, = 1; as u increases beyond this critical velocity, the
coefficient of friction decreases (Fig. 1).

On the whole, the coefficient
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of u' in (L.3) is a differential frequency, which is positive when A, <1 and takes negative values when

Ar > 1(Fig. 2). The ratios of the absolute values of the plasma frequency w,, the differential frequency wy,
and the collision frequency w = 1/7 determine the nature of the nonlinear oscillations of the drift velocity,
the electron density, and the electrostatic potential,

2. Equation (1.3) has one simple equilibrium state (uy, 0) on the phase plane u, w', while the roots of
the characteristic equation are given by
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Seven types of singularity are possible:

a) a simple stable node 0.5w 4 > w,,

b) a degenerate stable node 0.5wy = w,

c) a stable focus 0.5wq < wy,

d) a center wy =0,

e) an unstable focus —0.5wg< Wy,

f) an unstable degenerate node —0.5w3 = wy,
g) a simple unstable node —0.5wy > wy.

A diagram showing the regions of the wx = 14w, A, plane in which the different types of singularity
exist is given in Fig, 3; in 1 and 2 we have a stable node and focus, and in 3 and 4, an unstable focus and
node, respectively, On the boundaries of node and focus regions we have degenerate nodes, and on the
boundary of the stable and unstable focus regions we have a center,

Thus, if the directed electron velocity u is greater than the velocity U, (A ; > 1), unstable oscillations
appear in the medium. This is connected with the fact that the friction force mu/r decreases as u in-
creases. When u< U_ (Ay< 1), the friction increases with u (Fig. 1), so that the velocity oscillations are
always damped. When u= U, (A; = 1), the variation of the friction force is zero, or more precisely, it is
independent of the velocity (7 = cu, @ = const), and a periodic oscillation of u occurs in the medium as a
result of the inertia in the electron movement.

In this case, the first integral of (1.3) is
(v — U = 0, [C? — (u — up)?l* (2.2)

where the constant C defines the amplitude of oscillations. On integrating (2.2) we get

(uo — U)arcsin * _Cu" —[C? — (u — u)?] = o, (x — Ut) (2.3)
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We see that the periodic oscillations of the velocity in the nonlinear

medium have a frequency equal to the plasma frequency w,.

Successively integrating Poisson'’s equation, we get
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Fig, 3 This shows that the linear variation of the potential in £ is modulated by
oscillations of the plasma frequency, When @ = 0 (no collisions), Eq. (2.4)
yields the expressions obtained by Akhiezer and Lyubarskii concerning the non-
linear oscillations of a collision-free cold plasma [2].
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